martes, 10 de marzo de 2009

TELEFONIA IP


La telefonía IP conjuga dos mundos históricamente separados: la transmisión de voz y la de datos. Se trata de transportar la voz, previamente convertida a datos, entre dos puntos distantes. Esto posibilitaría utilizar las redes de datos para efectuar las llamadas telefónicas, y yendo un poco más allá, desarrollar una única red que se encargue de cursar todo tipo de comunicación, ya sea vocal o de datos.
La telefonía IP surge como una alternativa a la telefonía tradicional, brindando nuevos servicios al cliente y una serie de beneficios económicos y tecnológicos con características especiales.

martes, 3 de marzo de 2009








Como comprimir y descomprimir archivos en winRAR




WinRAR es el programa que yo utilizo para comprimir/descomprimir los archivos, para que ocupen menos espacio. El programa tiene muchas mas funcionalidades, pero yo solo lo uso para esto.




» COMPRIMIR
Boton derecho del raton sobre el archivo, y darle a “Añadir a: nombre_del_archivo.rar”. Automaticamente se creara en el mismo directorio el archivo comprimido.




» DESCOMPRIMIR
Boton derecho del raton sobre el archivo, y darle a “Extraer ficheros…” y a Aceptar. Automaticamente se creara una carpeta descomprimida con los archivos dentro.

Si quieres descomprimir varios archivos a la vez, pero cada uno en su correspondiente carpeta, seleccionar todos los archivos, boton derecho del raton sobre uno de ellos, y darle a “Extraer cada archivo en carpetas diferentes”.
Y si quieres extraer directamente el contenido de un archivo en el directorio en el que estes (sin crearse una carpeta intermedia), escoger “Extraer aqui”.













domingo, 1 de marzo de 2009

MOTOR DIESEL












El motor diésel es un motor térmico de combustión interna cuyo encendido se logra por la temperatura elevada que produce la compresión del aire en el interior del cilindro. Fue inventado y patentado por Rudolf Diesel en 1895, del cual deriva su nombre. Fue diseñado inicialmente y presentado en la feria internacional de 1900 en París como el primer motor para "biocombustible", como aceite puro de palma o de coco. Diesel también reivindicó en su patente el uso de polvo de carbón como combustible, aunque no se utiliza por lo abrasivo que es.





principio de funcionamiento: La principal ventaja de los motores diésel, comparados con los motores a gasolina, estriba en su menor consumo de combustible. Debido a la constante ganancia de mercado de los motores diésel en turismos desde los años 1990 (en muchos países europeos ya supera la mitad), el precio del combustible ha superado a la gasolina debido al aumento de la demanda. Este hecho ha generado grandes problemas a los tradicionales consumidores de gasóleo, como transportistas, agricultores o pescadores.
En automoción, las desventajas iniciales de estos motores (principalmente precio, costos de mantenimiento y prestaciones) se están reduciendo debido a mejoras como la
inyección electrónica y el turbocompresor. No obstante, la adopción de la precámara para los motores de automoción, con la que se consiguen prestaciones semejantes a los motores de gasolina, presentan el inconveniente de incrementar el consumo, con lo que la principal ventaja de estos motores prácticamente desaparece.
Actualmente se está utilizando el sistema
common-rail en los vehículos automotores pequeños. Este sistema brinda una gran ventaja, ya que se consigue un menor consumo de combustible, mejores prestaciones del motor, menor ruido (característico de los motores diésel) y una menor emisión de gases contaminantes





ventajas y desventajas: La principal ventaja de los motores diésel, comparados con los motores a gasolina, estriba en su menor consumo de combustible. Debido a la constante ganancia de mercado de los motores diésel en turismos desde los años 1990 (en muchos países europeos ya supera la mitad), el precio del combustible ha superado a la gasolina debido al aumento de la demanda. Este hecho ha generado grandes problemas a los tradicionales consumidores de gasóleo, como transportistas, agricultores o pescadores.
En automoción, las desventajas iniciales de estos motores (principalmente precio, costos de mantenimiento y prestaciones) se están reduciendo debido a mejoras como la
inyección electrónica y el turbocompresor. No obstante, la adopción de la precámara para los motores de automoción, con la que se consiguen prestaciones semejantes a los motores de gasolina, presentan el inconveniente de incrementar el consumo, con lo que la principal ventaja de estos motores prácticamente desaparece.
Actualmente se está utilizando el sistema
common-rail en los vehículos automotores pequeños. Este sistema brinda una gran ventaja, ya que se consigue un menor consumo de combustible, mejores prestaciones del motor, menor ruido (característico de los motores diésel) y una menor emisión de gases contaminantes






piezas fundamentales:




Bloque.
Es la estructura básica del motor, en el mismo van alojados los cilindros, cigüeñal, árbol de levas, etc. Todas las demás partes del motor se montan en él.
Generalmente son de fundición de hierro o aluminio.
Pueden llevar los cilindros en línea o en forma de V.
Lleva una serie de aberturas o alojamientos donde se insertan los cilindros, varillas de empuje del mecanismo de válvulas, conductos del refrigerante, los ejes de levas, apoyos de los cojinetes de bancada y en la parte superior lleva unos taladros donde se sujeta el conjunto de culata






Cigüeñal.
Es el componente mecánico que cambia el movimiento alternativo en movimiento rotativo. Esta montado en el bloque en los cojinetes principales los cuales están lubricados.
El cigüeñal se puede considerar como una serie de pequeñas manivelas, una por cada pistón. El radio del cigüeñal determina la distancia que la biela y el pistón puede moverse. Dos veces este radio es la carrera del pistón.
Podemos distinguir las siguientes partes:
Muñequillas de apoyo o de bancada.
Muñequillas de bielas.
Manivelas y contrapesos.
Platos y engranajes de mando.
Taladros de engrase.
Una muñequilla es la parte de un eje que gira en un cojinete.
Las muñequillas de bancada ocupan la línea axial del eje y se apoyan en los cojinetes de bancada del bloque. Las muñequillas de biela son excéntricas con respecto al eje del cigüeñal. Van entre los contrapesos y su excentricidad e igual a la mitad de la carrera del pistón. Por cada muñequilla de biela hay dos manivelas.
Los motores en V llevan dos bielas en cada muñequilla.
En un extremo lleva forjado y mecanizado en el mismo cigüeñal el plato de anclaje del volante y en el otro extremo va el engranaje de distribución que puede formar una sola pieza con él o haber sido mecanizado por separado y montado luego con una prensa. Algunos cigüeñales llevan un engranaje de distribución en cada extremo para mover los trenes de engranajes de la distribución.
Otra particularidad del cigüeñal es una serie de taladros de engrase. Tiene practicados los taladros, para que pase el aceite desde las muñequillas de biela a las de bancada. Como al taladrar quedan esos orificios en los contrapesos, se cierran con tapones, que se pueden quitar para limpiar dichos conductos





Camisas.
Son los cilindros por cuyo interior circulan los pistones. Suelen ser de hierro fundido y tienen la superficie interior endurecida por inducción y pulida.
Normalmente suelen ser intercambiables para poder reconstruir el motor colocando unas nuevas, aunque en algunos casos pueden venir mecanizadas directamente en el bloque en cuyo caso su reparación es mas complicada.
Las camisas recámbiables cuando son de tipo húmedo, es decir en motores refrigerados por liquido, suelen tener unas ranuras en el fondo donde insertar unos anillos tóricos de goma para cerrar las cámaras de refrigeración, y en su parte superior una pestaña que se inserta en un rebaje del bloque para asegurar su perfecto asentamiento.








Segmentos.
Son piezas circulares metálicas, autotensadas, que se montan en las ranuras de los pistones para servir de cierre hermético móvil entre la cámara de combustión y el cárter del cigüeñal. Dicho cierre lo hacen entre las paredes de las camisas y los pistones, de forma que los conjuntos de pistón y biela conviertan la expansión de los gases de combustión en trabajo útil para hacer girar el cigüeñal. El pistón no toca las paredes de los cilindros. Este efecto de cierre debe darse en condiciones variables de velocidad y aceleración. Los segmentos impiden que se produzca una perdida excesiva de aceite al pasar a la cámara de combustión, a la vez que dejan en las paredes de la camisa una fina capa de aceite para lubricar.
Por tanto los segmentos realizan tres funciones:
Cierran herméticamente la cámara de combustión.
Sirven de control para la película de aceite existente en las paredes de la camisa.
Contribuye a la disipación de calor, para que pase del pistón a la camisa











Bielas.
Las bielas son las que conectan el pistón y el cigüeñal, transmitiendo la fuerza de uno al otro. Tienen dos casquillos para poder girar libremente alrededor del cigüeñal y del bulón que las conecta al pistón.
La biela debe absorber las fuerzas dinámicas necesarias para poner el pistón en movimiento y pararlo al principio y final de cada carrera. Asimismo la biela transmite la fuerza generada en la carrera de explosión al cigüeñal.














Cojinetes.
Se puede definir como un apoyo para una muñequilla. Debe ser lo suficientemente robusto para resistir los esfuerzos a que estará sometido en la carrera de explosión.
Los cojinetes de bancada van lubricados a presión y llevan un orificio en su mitad superior, por el que se efectúa el suministro de aceite procedente de un conducto de lubricación del bloque.
Lleva una ranura que sirve para repartir el aceite mejor y más rápidamente por la superficie de trabajo del cojinete. También llevan unas lengüetas que encajan en las ranuras correspondientes del bloque las tapas de los cojinetes. Dichas lengüetas alinean los cojinetes e impiden que se corran hacia adelante o hacia atrás por efectos de las fuerzas de empuje creadas. La mitad inferior correspondiente a la tapa es lisa.
Además de los de bancada, todos los motores llevan un cojinete de empuje que evita el juego axial en los extremos del cigüeñal.
Otro tipo de cojinete es el usado en los ejes compensadores; es de forma de casquillo, de una sola pieza. El orificio de aceite coincide con el conducto de lubricación del bloque.










Culata.
Es el elemento del motor que cierra los cilindros por la parte superior. Pueden ser de fundición de hierro o aluminio. Sirve de soporte para otros elementos del motor como son: Válvulas, balancines, inyectores, etc. Lleva los orificios de los tornillos de apriete entre la culata y el bloque, además de los de entrada de aire por las válvulas de admisión, salida de gases por las válvulas de escape, entrada de combustible por los inyectores, paso de varillas de empujadores del árbol de balancines, pasos de agua entre el bloque y la culata para refrigerar, etc.
Entre la culata y el bloque del motor se monta una junta que queda prensada entre las dos a la que llamamos habitualmente junta de culata















piston
El pistón es un cilindro abierto por su base inferior, cerrado en la
superior y sujeto a la biela en su parte intermedia. El movimiento del pistón
es hacia arriba y abajo en el interior del cilindro, comprime la mezcla,
transmite la presión de combustión al cigüeñal a través de la biela, fuerza
la salida de los gases resultantes de la combustión en la carrera de escape
y produce un vacío en el cilindro que “aspira” la mezcla en la carrera de
aspiración.
El pistón, que a primera vista puede parecer de las piezas mas
simples, ha sido y es una de las que ha obligado a un mayor estudio. Debe
ser ligero, de forma que sean mínimas las cargas de inercia, pero a su vez
debe ser lo suficientemente rígido y resistente para soportar el calor y la
presión desarrollados en el interior de l la cámara de combustión.








Válvulas.
Las válvulas abren y cierran las lumbreras de admisión y escape en el momento oportuno de cada ciclo. La de admisión suele ser de mayor tamaño que la de escape.
En una válvula hay que distinguir las siguientes partes:
Pie de válvula.
Vástago.
Cabeza.
La parte de la cabeza que está rectificada y finamente esmerilada se llama cara y asienta sobre un inserto alojado en la culata. Este asiento también lleva un rectificado y esmerilado fino.
El rectificado de la cara de la válvula y el asiento se hace a ángulos diferentes. La válvula siempre es rectificada a 3/4 de grado menos que el asiento. Esta diferencia o ángulo de interferencia equivale a que el contacto entre la cara y el asiento se haga sobre una línea fina, proporcionando un cierre hermético en toda la periferia del asiento. Cuando se desgaste el asiento o la válvula por sus horas de trabajo, este ángulo de interferencia varía y la línea de contacto se hace más gruesa y, por tanto, su cierre es menos hermético. De aquí, que de vez en cuando haya que rectificar y esmerilar las válvulas y cambiar los asientos.
Las válvulas se cierran por medio de resortes y se abren por empujadores accionados por el árbol de levas. La posición de la leva durante la rotación determina el momento en que ha de abrirse la válvula.
Las válvulas disponen de una serie de mecanismos para su accionamiento, que varía según la disposición del árbol de levas.








Engranajes de distribución: Conduce los accesorios y mantienen la rotación del cigüeñal, árbol de levas, eje de leva de la bomba de inyección ejes compensadores en la relación correcta de desmultiplicación.
El engranaje del cigüeñal es el engranaje motriz para todos los demás que componen el tren de distribución, por lo que deben de estar sincronizados entre si, de forma que coincidan las marcas que llevan cada uno de ellos.







Bomba de aceite.
Está localizada en el fondo del motor en el cárter del aceite. Su misión es bombear aceite para lubricar cojinetes y partes móviles del motor.
La bomba es mandada por u engranaje, desde el eje de levas hace circulas el aceite a través de pequeños conductos en el bloque.
El flujo principal del aceite es para el cigüeñal, que tiene unos taladros que dirigen el lubricante a los cojinetes de biela y a los cojinetes principales. Aceite lubricante es también salpicado sobre las paredes del cilindro por debajo del pistón.







Bomba de agua.
Es la encargada, en los motores refrigerados por liquido, de hacer circular el refrigerante a través del bloque del motor, culata, radiador etc.
La circulación de refrigerante a través del radiador trasfiere el calor del motor al aire que circula entre las celdas del radiador. Un ventilador movido por el propio motor hace circular el aire a través del radiador.




Antivibradores.
En un motor se originan dos tipos de vibraciones, a consecuencia de las fuerzas creadas por la inercia de las piezas giratorias y de la fuerza desarrollada en la carrera de explosión.







Vibraciones verticales.




Vibraciones torsionales.




En el diseño de los motores se procura evitar las vibraciones. Sin embargo, al no poder ser anuladas completamente por métodos normales, se emplean otros medios para compensarlas o amortiguarlas, como son: Ejes compensadores y amortiguadores





Ejes compensadores.
Todos los motores de cuatro cilindros, así como los de ocho en V de 60º, por tener los brazos del cigüeñal en un mismo plano, se ven afectados de un desequilibrio inherente producido por el desplazamiento del centro de gravedad de las piezas móviles durante las cuatro carreras del pistón.
Esta fuerza vibratoria vertical, que tiende a hacer saltar el motor y arrancarlo de su anclaje, podemos contrarrestarla aplicando, por medio de un dispositivo, una fuerza igual y de sentido contrario. Se utilizan unos ejes compensadores que van engranados en la distribución del motor.
Estos ejes o contrapesos van calados en la distribución de forma que originen una fuerza igual y contraria a la que se produce al desplazarse el centro de gravedad de las piezas móviles, anulándose sus efectos. Para ello tienen que girar a doble velocidad que el cigüeñal.
Asimismo, giran entre si en direcciones opuestas, para evitar que se origine una oscilación o vibración lateral del motor.
En los motores de 8 cilindros en V de 60º, llevan dos ejes excéntricos que van engranados; uno en la distribución delantera y otro en la trasera, y en estos motores, al revés que en los de 4 cilindros, los contrapesos giran en el mismo sentido que el cigüeñal.
Es importante que estos ejes se compruebe van engranados en sus marcas, pues en caso contrario en vez de anular las vibraciones las aumentarían




Amortiguadores.
En todos los motores se producen las vibraciones torsionales, por la torsión momentánea debida a la fuerza desarrollada en la carrera de explosión y su recuperación en el resto del ciclo.
Aunque el volante se diseña con suficiente tamaño y masa, para que su inercia mantenga un giro uniforme, absorbiendo energía en los impulsos giratorios y devolviéndola en el resto del ciclo; no evita que el cigüeñal se retuerza en esos momentos de aceleración.
Por ello se utiliza otro dispositivo en el otro extremo del cigüeñal, llamado amortiguador de vibración que tiene por objeto crear una fuerza torsional igual y de sentido contrario a la que sufre en el instante de la explosión, para que sus efectos se anulen.
Hay dos tipos de amortiguadores o dampers:
El primero utiliza como material amortiguador el caucho. Los cambios de par del cigüeñal son absorbidos por él y la energía es disipada en forma de calor. Por ello, una manera de comprobar si funciona bien un damper es notar si está más caliente que el resto de las piezas del motor que le rodean.
El amortiguador tipo viscoso consta esencialmente de una corona pesada, alojada en una carcasa fijada a un extremo del cigüeñal, pudiéndose mover libremente dentro de ella al estar suspendida en un fluido (silicona). Esta corona tiende a oponerse a cualquier cambio súbito de velocidad, transmitiendo esta resistencia a través del fluido a la carcasa y por tanto al cigüeñal, contrarrestando o amortiguando la vibración torsional.
El fluido absorbe gran cantidad de energía de movimiento de la corona, por lo que se calienta.
Es conveniente observar periódicamente el estado del damper por si ha sufrido un golpe o abolladura que pudiera limitar el movimiento libre de la corona, pues entonces su efecto se sumaría al que soporta el cigüeñal con el peligro consiguiente de rotura por esfuerzo torsional